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DERIVATION OF THE EQUATIONS OF MOTION OF A SYMMETRICAL
WING-TIP—COUPLED ATRPTANE CONFIGURATIQN WITH
ROTATIONAL FREEDOM AT THE JUNCTURES

-By Albert A. Schy
SUMMARY

The method of Lagrange multipliers 1s used to take account of the
dynamic effects of the comstralnts at the wing tips when two ldentical
alrplanes are coupled to tHe wing tips of a "mother" airplane. The
resulting equations of motlon of this symmetrical configuration eare

derived for onme, two, or three degrees of rotational freedom at each
joint

The effects of aerodynamlc Interference are ignored In the origi-
nal derivation. It is then shown how the aercdynsmic Interference terms
may be included when they are known. As an example, the interference
terms arising from variations of the rolling velocities and angles of
attack of the individual alrplanes are treated.

INTRODUCTION
»

Wing-tip to wing-tip coupling of airplanes 1s being investigated is
a means for. carrying fighter protection on bomber migssions or for in-
flight refueling. Because of the incresse in effective aspect ratioc in
thig configuration, the outer "parasite™ airplanes can probably be
carried more efficiently than in any other manner (references 1 to 4).
The method of tandem coupling does not have this advantage of increased
aspect ratio and has, in addition, proven to be inefficient because the
Fear alrplane must fly in the downwash of the front airplane.

The structural loads on the wings in the wing-tip-coupled configu-
ration may be minimized by allowing rotaticnal freedom at the jolnts.

»In this paper it is shown how the method of Lagrange multipliers may be

used to analyze the dynamic effects of the constraints at the wing tips.
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The resulting equations of motion for small disturbances of a symmetrical
configuration from its trim condition are derived for one, two, or three
degrees of rotational freedom at each Jjolnt. Because of the symmetry of
the configuration, the equations may be separated into independent
lateral and longltudinal modes.

The primary purpose of thls investigation is to analyze the purely
dynamic effects of wing-tip coupling; therefore the eguations of motion
are first derlived wilithout considering the aerodynamic Interference
between the alrplanes. Such Interference effects, however, may.be
important. Therefore, the types of aerodynamic interference terms
which may occur are dlscussed from a general polint of view, and 1t 1s
shown how these terms, when they are known, can be included in the equa-
tions of motion, As an example, it 1s shown how the interference terms
arising from varilations of the rolling velocities and angles of attack
of the individual alrplenes may be included in the equations of motion.
These - terms are belleved to be the most lmportant interference effects
in this type of-—coupling.

The effects of aercelasticity are ignored in this dilscussion.
SYMBOLS

X Y, 2 conventional stabllity axes for describing alrplane
motions; components of sercdynamic forces along these
axes; also components of fixed positions of coupling
- joints 1n these axes

Vo steady-state veloclty, taken along the steady;state
X-axis

t - time

X, ¥V, 2 components of disturbance displacement of alrplane along

X-, Y-, and Z-axes, respectlvely

u, vV, W components of dlsturbance translational velocity elong
X-, Y-, and Z-axes, respectively (dx/dt; -dy/dt, dz/dt
taken in stabllity axes)

ut, B, « nondimensional forwerd velocity, sldeslip angle, and
angle of attack, respectively .

g, e, ¥ components of disturbance rotation sbout X-, Y-, and Z-
axes, respectively
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Me an arbitéary_factor (Legrangets "undetermined multiplier;")
3 indicates a small virtual increment

1 _ index denoting degrees of freedom of & mechanical system
ay , _generalized coordinates used to describe a mechanical

system; also used, in particular, to denote degrees of
freedom of the three alrplanes

Fy - generalized applied force in airplane degree of freedom

Eq ' sum of the inertlal, welght, and aerodynaﬁic forces in

- . unconstrained equations of motion of an airplane

m mass

W -wéight _

Iy, Iy, Ig moments of Inertia of airplene about the X-, Y-, and Z- |
exes, respectively

Iyy product of inertis of airplane

v flight-path-angle

Lt 1lift force

b . wing spaﬁ

c wing chord

S ) wing aresa

ol air density

q = 12'- V02 .

Fxs Fy, FZ components of applied forces aelong stabllity axes

L, ﬁ, N _ components of applied moments about X-, Y-, and Z-axes,

respectively; also components of aerodynamic moments

[+ 3 angle of fighter deflection about hinge, when hinge-type
coupling is used _ :

apagp”
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Mo - : angle between hinge axis and steady-state X-axis when'
hinge axis 1s parallel to steady-state XZ-plane
M.s s N angles between hinge axis and the steady-state X-, Y-,
1 2 3 and Z-axes, respectively, when the hinge is arbitrarily
oriented
Seb;
= ff
T :
Sgbe”
A2 = 3
_ gb
S
= =L o
b
= L
All_ — 'b N
Spc
f~f
B, =
1 Sc
ISP
Sc3
s
£
By = L
3778
c
_ St
By =2
" b
By = =
b
Bg = oL . - - . .
Cr
b &
D, = = =
bV, at
D. = &
¢ vV, dt
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Ho pSb
o=
He pSc

Cx
Cy
Cg,
Cy
CII‘J.
c]’l
3Cy,
C, =
Zq a(cé )
2VO
ac
GIP = —1
3(2?5_)
XN/

Kx ,- KYE, KZ2 squa.z"e of the nondimensional rad

ii of gyratlion in roll,

' I
pltch, and yaw, respectively (

nondimensional product-of-inertia perameter (

"

longitudinal-force coefficient (axg)

lateral-force coefficient (qls)

normel-~force co’efficient. (—%) ;
a:

rolling-moment coefficlent (?L‘_D-)

S
pltching-moment coefficient .q%)
c

- N
yawing-moment _c_o_effi;:!.ent (qu)

b2

Iy )
m'b2

m'bE
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ug, = 2
a cQL
<2V o)
ac
C — m
"a a(ge_)
EVO
3¢,
CnP b. )
) el
_ 3,
D.r 'b{i‘
S(EY.
o

Whenever u, ut, v, B, w, W, a, P, 6, and ¢ are used as sub-

: aC.

gcripte, a derivative is indicated. For example, Yy = gY and CYB aﬁY
v

Note: Unconventional gtablility derivatlves caused by aerodynamic Inter-

ference are distinguished by parentheses; namely,

(2)e > (2): aerodynamic Z-force on bomber due to unit fighter angle of
b ¢f _ attack and unit fighter rolling velocity, respectively

(L ) @p? (¥ serodynamic rolling moment on bomber due to unit fighter
¢f angle of attack and unit fighter rolling velocity,
respectively

(Zf) s (Zf). aerodynamic Z-force on fighter due to unit bomber angle
o ¢ of attack and unit-homber rolling wveloclty, respectively

(Lf)a, (Lf)ﬁ. serodynamic rolling moment on the fighter due to unit

bomber angle of attack and unit bomber rolling velocity,
respectively

(Za) aerodynamic Z-force on fighter due to unit rolling
T velocity of same fighter _ __
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(La) aerodynemic rolling moment on fighter due to unit angle

 E of attack of same fighter

Subscripts:

o initiel conditions b

hig fighter parameters

1, 2 parameters of.left and right fighters, respectively -

i index denoting the degrees of freedom of a mechenical
system ' .

k . index denoting a particular equation of conditlon con-
necting the degrees of freedom, or the corresponding
undetermined multiplier

8, & . symuetrical and antisymmetrical components of combined
fighter motion, respectively (see equations (9), (10),
and (16))

Note: No subscript is used on bomber paraemeters.
PRELIMINARY DISCUSSION

The configuration to be considered consists of three alrplanes
coupled wing tip to wing tip. The two outer airplanes are asgsumed to
be exactly alike. Since the central alrplane is carrylng the two outer
alrplenes along as parasites, these alrplanes wlll probably be smaller
than the central alrplane. For convenlence, the central alrplane will
be referred to as & bomber and the outer alrplanes will be referred to
ag fighters, although the analysis will actually be qulte general and
the only real restriction will be that the outer alrplanes, Including

thelr coupling to the central alrplane, be exactly alike.

The ordinary equations of motlon for the three alrplanes flying
independently will be modified by the interactions between the air-

'~ planes. These interactions are of three types: the dynamic Interactions

arising from the coupling at the wing tips, the aerodynamic interactions
arising from the interference effects on the alr flow over the alrplanes
due to their proximity, and the elastic inferactions. In the present
case the alrplanes are assumed to be rigid, therefore, elastic effects
mey be ignored.
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The primary purpose of the present paper 1s to take account of the
dynamic effects of the constraints at-the wing tips and set up a method
for obtalning the equations of motion of the entire conflguration for
small disturbances from & trim condition, This method will first be
developed without considering the aercdynamic interference effects.

The equations so derived would be correct for airplanes coupled together
with a large enough gap between the wing tips so that aerodynamic inter-
ference could be ignored. Lster, it will be shown how the effects of
aerodynamic interference may he considered without any essential modi-
fication of the method of obtaining the equations of motion of the
configuration.

DERIVATION OF EQUATIONS OF MOTICN .

WITHQUT AERODYNAMIC INTERFERENCE

In order to describe the motion of three independent airplanes,
eighteen degrees of freedom consgisting of the ordinary six degrees of
freedon for each airplane must be considered. If the wing tips are
agsumed to be connected, then the transiational motion of adjacent wing
tips must be the sasme. The translational motion of the wing tlps at™
each point of connection ls expressed in terms of the degrees of free-
dom of the individual airplanes. Then the expressions for the trans-
lational velocitlies of adjacent wing tips may be set equal to each
other. Thus, for each codnnectlon, three equations are obtalned relating,
the degrees of freedom of the alrplanes, since one equation 1s obtained
for each component of the translational velocity of the wing tips. There
aré, therefore, six equations of condition (or constraint) connecting
the eighteen degrees of freedom for the case of complete rotational .
freedom &t each connection. The eguatlons of motlon of the total system,
taking account of the effectis of the conastraints, w11l be derived using
Lagrange's method of undetermined multipliers (references 5 and 6).

The equations of motion for each independent alrplene are referred
to stability axes fixed In the- separate airplanes (see fig. 1)}. For
the present discussion 1t willl be éssumed that in the equilibrium con-
dition of. the configuration the fighters may be trimmed.so that all six
wing tips lie on & stralght line; then in the steady state all three
gsets of alrplane axes may be taken parallel. For each airplane, the
components of the wing-tip velocities along axes fixed in space parallel
to the steady—state axes may now be written in terms of airplane degrees
of freedom as follows:

Vo +u + 20 - YV - ' (1a)
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R ‘v+Voﬂr+X;F—Z§.?5', ' {(1p)
W - V0 + Yf - X6 | (1)

vhere u, v, wand p, 6, V¥ ere the disturbance translational and
rotational velocities of the airplane axes, Vo 1is the steady-state
velocity along the X-axis, and X, Y, and Z - are the fixed positions
of the wing tip in airplane ccordinates.

The subscript. £ wlll be used to indicate the fighter parameters
common. to both fighters. The fighter to the left of the bomber willl be
indicated by using the subscript 1 on its varlables and the fighter to
the right of the bomber wlll be ilndiceted by using the subscript 2. No
subscript will be used for the bomber. The constraining conditions are
that the velocity of the right wing tip of the left fighter must equal
the velocity of the left wing tip of the bomber and the velocity of the
left wing tip of the right fighter must equal the velocity of the right
wing tip of the bomber. For example, the two equations glving the
X-veloclties of the points of connection are, from expression (la),

© b . be ¢
Vo +u + Z6 + E'w =Vo +uy + zfel 3 ¥,

Vo + u + Zé - P-ﬁ =Vq +u, +2 é + Ei;i
o 2" 7 0" T2 " T2 T 2 2

Solving these equations and the similar equations of condition for the
translational velocities of the fighters gives

) ‘= u +.76 + %-% - Zfél +'%§-%l . | (2.1)
vy =V o+ Vo + X - 29 - Vo‘i'l - Xf‘}l * Zf¢l - (2.2)
wl_=w-v§e-'%g}j_xé_+voel-%iéfl+xféin (2.3)
up = w2 - B - 2gby - f;—fxife | (2.1)
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Vo = v o+ VoV + XV - ZP - V ¥, - XV, + 2.0, (2.5)
w2=w-voe+'%g3-xé+voee+%§;32+xfé2 - (2.6)

These equations are the equations of condition imposed by the constraints
when the axes of all the alrplanes are parallel. Inasmuch as small angles
occur between the sets of axes during the motlon, equations (2) should be
modlfied to be exact by introduclng the proper trigonometric functions of
these varilable angles. However, it is apparent that equations (2) remain
valid to first-order accuracy as long as the dlsturbances are small,
Therefore, for the purposes of stabllity analysis these equatlions are
valid equations of condition i1f the alrplanes have heen allned as previ-
ougly described in the trim corndition. Actually, other possible trim
condltions exist in which there may be steady-state-angles between the
bomber and flghter; therefore, the bomber snd fighter axes are inclined
at an angle to each other., In such cases the proper trigonometrlc func-
tions of the steady-state angles must be Introduced into the equations

of condltion. 'Since the presence of these constant factors does not
fundamentally alter the method of obtaining the equations of motion, the
discusslon of such trim conditions will be deferred until later.

Application of Lagrange‘s-Method of Undetermined Multipliers to
the Case of Complete Rotatlonal Freedom of the Wing Tips

Lagrangets method of undetermined multipllers provides a convenient
means of taking sccount of-the constraints In the present problem. This
method isg based on d'Alembert's Principle, which is an extension of the
principle of virtual work to dynamics. For the simple case of the motion
of a set of n particles, d'Alembertts Principle states thgt, for
"virtual” displecements 8qy, .

%_“(Q-i - m3dy)8q; = 0
i=1

where m; 1s the mass of one of the particles, gy 1s the displacement
in the ith degree of freedom, and @; 1s the corresponding applied
force. In the present application, let Ei indicate the sum of the

inertial, aerodynamic, and welght terms in the unconstrained equation
of motion corresponding to a glven degree of freedom of an alrplane,
let Fy indicate any additional applied force in that degree of freedom,
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and let qg indicate the displacement In that degree of freedom. Then
dtAlembert's Principle tekes the form ' '

8 o A
-E_.('E|i - E_i)dq-i = ("'FY +mv - Yov + oV - ¥W sin 7, - @V cos 70)5y -

(N+va-IZ{Ir.+N1i€r+Ixz¥+ﬁ¢§.§)&F+. . .=0

(3)

Here 8y‘E¢8ql, Y = Sqa, and so forth for all elghteen degrees of
freedom; and the factor of each qu is the equation of motion in the
" corresponding degree of freedom, for the unconstrained alrplanes.

Lagrange's method then requires the conditions relating the virtual
digplacements in the various degrees of freedom. These egquations of
condition can be obtained from equetions (2). For example, if equa-
tion {2.2) is multiplied by &t, :

By, =8y + V¥ 8t +xa~1r-zs¢-vowlrl'5t-x.f5ﬂrl+zf5¢l

Since the constraint is geometrical, &t may be taken as zero (see
reference 6, p. 58). With &t = 0, each of the six equations of condi-
tion obtained from equations (2) is multiplied by an arbitrary param-
eber A (k =1, 2, . . . 6) and the following equations result:

. _ . |
x1<5x+zse+%5qr-axl-zf se_l+-2-flawlrl)=o (4.1)
x2(5y+xav-zs¢-5yl-xf 8, + Z, 5¢l)=o (k. 2)
a5z - B of - X 80 - 62, - Loy, + Xp 86} =0 - (k.3)
“A3(dz - 3 8f - - %z3 - 5 0P + Xp 80, = (.3
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Z\.h<8x + 280 - B 8% - bx, - 2 80, - b?f-aﬂr'z) =0 (3.1)
As(By + X oY - Z 8¢ - By, - Xp B¥, + Zg sfy) =0 - (k5)
‘ x6(az + % 8¢ - X 86 - Bz, + ?ei 83, + X 592) =0 (4.6)

Since these equations of constraint—are integrable, 'six of fthe
elghteen degrees of freedom can be elliminated by using them (refer-
ence 6). It might be noted that the exact equations of constraint,
including the trigonometric functions of the variable deflection angles,
would not only lead to nonlinear equations of-motion but-would also lead
to nonintegrable constraints. In this case none of the variables could
be eliminated and the problem would be extremely complicated.

Equations (4) are now added to equation (3), and the factors of
. each B8qy. are collected. The arbitrary A, may be chosen.such that

silx of these factors should vanish, since there are six parsmeters Xk.
" 8ince there are twelve independent variables in the system, the vari-

ables agsoclated with the remaining twelve factors may be consldered to -

. be independent and the assocliated displacementg Eqi are therefore
arbitrary. 8Since the displacements 8q; are arbitrary, the factors of

the remaining twelve displacements Sqi must also vanish to satlsfy the
equation obtained by adding equations (%) to equation (3). Thus the
parameters Lk mey be chosen such that the factor of each of the
eighteen displacements 8&q; must vanish and eighteen equations are
obtained. For example, the factor of &y from equation (3) is

(‘FY +mv - Y,v + oV ¥ - YW sin 7, - @W cos 70), whereas from the sum of
equations (4) the factor of .3y is Ap + As5. Setting the sum of these

factors equal %o zero yields the first equation. The eighteen equations
obtalned in this fashlon are the followling:

nn}-vv+mVO\}r—¢Wsin70—¢Wcos7o-f-L2+).5=FY (5.1)

SRR,

~



NACA RM L51G12 L3

).

v+ Ig¥ - Ny - Ig8 - ¢¢ + 20 - Ay) + X(Ap + hg) = N
“Lyv = Tgg¥ - Li¥ + Igh - Tgf - Z(hp + hg) + Dhg = A3) = L
mﬁ-xuu-xww+6'Wcos Yo + M + Ay = Fy

“Zygu + W - Zoir - (2 + TVO)E + OW sin 7, + g + hg = Fy

-M,u - Liww -'M",,v'w - Mee + IYb. + Z(}’\.]T + 7"1;) - X()}.3 + 7"6)‘=M '

meVy = Yyt BV - Wl sIn 7, - W cos 7, = My = By,

.e . e . b " .
- . L) f —
Wy vy + Iz ¥1 - Ny - Igp f - Ny By + 5 - Xphp =N

) .a . .e . . - b
R S T Y

m,fﬁ.l - Xuflll - wawl + Gle cos 70 - ).l = Fxl

_Zufu]_ + WpWry ~ wawl' - (Zaf + mfvo)al + 8Wg 8in 75 = Mg = FZ].

f
=

-Muful - MWle —_M;rfwl - Méfel + nyal’— Z:F.Xl + Xfl3 =

13

(572)

(5.3)
(5.1)
(5.5)
(5.6)

(5.7)
(5.8)

(5.9)
- (5.10)

(5.11)

(5.12)
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mevy - vavz + mVob, - wéwf sin 7, - ¢2Wf cos 7 - x5 = FY2 (5.13)

[ . * . . b -
Ny va + Iz Vo - Nyd2 - Ixzf¢2 - g o - 2N - X =N (5.14)
.o s . L b
“Lyve - Ixg Vo - Ly Vo + Ix fo - Ly @y + Zohs + =+ 2 = Lp (5.15)
mfﬁz - Xufua - waWQ + 8 Mp cos 7, - xh = EX2 (5.16)

Vo - (Zéf + mfvo)a2 + O Wp 8in 75 - Mg = Fp  (5.17)

-7 + MoWA =
uglo B - Zy o

f_

My up - My ip = My vp = Mg 0 + Ty Bp = Zehy + Xghg = Mp (5.18)

In these equations the terms in the undetermined parameters represent
the constraining forces arising from the wing-tip connections. Equa-
tions (4) and (5) now glve twenty-four equations in the twenty-four
unknowns congisting of the elghteen degrees of freedom and the six parame
eters Ay. Moreover, since the constraints given by equations (4) are

integrable, the system can be completely described by only twelve inde-
pendent degrees of freedom. The twelve independent equations of motion
can be obtained by first solving for the constraint parameters 2, and

then substituting these values into any twelve of equations (5). Any
_8ix of the original degrees of freedom may row be eliminated by using
the constraint conditions in the convenient form given by equations (2).

The most convenient method of carrying out thls process is to

cobtain twelve linearly independent combinations of equations (5) which
eliminate the parameters MN,. This may be done in many equlvalent ways,
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but the following twelve linearly independent combinations seem to be
the slmplest:

Side-force equation: | (5.1) + (5.7) + (5.13) ' (6.1)
Longi'l';udinal-force equation: ' (5.%) + (5.10) + {5.16) . (6.2}
Normel-force equation: _(5.5) + (5.11) + (5.17) , (6.3)
Bomber yaw equ;.tion:  (5.2) - X(5.1) + %Eilo) - (5.16)] (6.4)
‘Bomber roll equation: (5.3) + 2(5.1) + %Kirr) - (5_.15_[ (6.5)
‘Bomber pltch equation: (5.6) + X(5.5) - Z(5.4) _ (6.6)
Le.f‘t—fighter yew equation:  (5.8) + b?f (5.10) - Xp(5.7) (6.7)
Left-fighter roll equation: (5.9) + 2(5.7). - b?f (5.11) . (6.8)
Left-fighter pi‘bch; equation: (5._12) - 25(5.10) + Xp(5.11) (6.9)
Right-fighter yaw equation: =~ (5.14) - b?f (5.16) -~ Xo(5.13) (6.10})
Right-fighter_ roll equation: | (5.15) + 2£(5.13) + Eéf- (5.17) (6.11)
Right-fighter pitch equation: (5.18) - Zg(5.16) + Xp(5.17) - (6.12)

The six translational degrees of freedom of the fighters may be elimi-
nated from equations (6) by using equations (2). Then these are the
twelve linearly independent differential equations in the twelve
remgining independent degrees of freedom which determine the small
motions of the configuration. Any other combination of equations (5)
wvhich eliminates the parameters M, may be written as & linear com-

bination of these twelve equatlions. The first three equations give the
combined translational forces on the system, the next three equations
glve the rotational moments on the bomber, and the final six equations
glve the rotational moments on the fighters. The sclution of this set
of equations would glve the translational motion of the bomber center of
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gravity and the rotetional motion of .the bomber and both fighters. The
translational motion of the fighters is of little interest, but may, of
course, be obtained from equation (2).. )

SYMMETRIZATION OF EQUATIONS OF MOTION

The equatlions presented are not in the proper form to show the
- gymmetry of the system. The proper form can be obtained by expressing
the fighter motions and forces in symmetrical and antisymmetrical com-
ponents. For example, consider the rolling equations of the fighters.
The rolling equation of the left fighter, equation (6.8), is

o,
R
]
5]
2|
,e_.
1

MoZ 6 = (va + Zg¥y )v + mfxzfxlr + l:mfz;fvo - i(va + Zvaf) +

v o + (3 -2 « oo o) 5 i

N

2, u-mp L+ fa vt X L8 el iy 4oz X7, )8
g T 2 Vr 2 E(mf"_'uf f)

'b 2 se .

b . .
e
zw l¢l - $1ZMp cos 74 - mfxf e1 + —(Ze g + Xelu, - zfzuf)el +

)y

b : | .

S - Ve o 70 - (g + )y @ (Bl + 2% )5

2

P_‘f_zu»]r+ L, + ZeY, \Vg = ZWp sin 7 |V, = + Z -Efr

n 1+ ( £¥v,) Vo = 2oz Bt Ayt T
(7

The rolling equation of the right fighter, equation (6.11), is the same
as equation (7) except that the subscript 2 replaces the subscript 1,

-b replaces b, and -bo replaces Do that is,
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L] i i . - bb
. ' f .
mZ - (va + zfxvf)v + mixzfxr +{m 2.V, - X(va_+ Zvaf) < Zu;l n

(v, * 2ot Yo + gL - 22)§ + [z(va » 2%, ) - 2 zv;]és -

£

b ' . b be =
Ef-z.ufu+mf?w_-?fzwfw-mfx-ai (m.fV + 22, xzw)e+

. o2 . . |
- wavoe + E:Xf + mf(—lf;— + ng) $s - I}Sﬁf + Zf(Lv + ZgY f)+

byp e by

-2 .
- 2 ]¢2 - gty cos 7, + meks 5 02 - —(Ze * Xl - Zquf)ee, -

%(Vo%f - V;Tf gin 70)92- - (IXZf + mixfzf)ll;z + E(f(LVf . fovf) - L,}f +

o .
be

N — £

(8)

~

These equations do not show the symmetry of the system, since they con-

. tain both longitudinal end lateral degrees of freedom. These two equa-

tions, however, may be replaced by their sum and their differenge;f
physically, this substitution is equivalent to replacing the individual

fighter rolling moments by the equivalent symmetrical and antigymmetrical
. components of the combined fighter rolling moments. The symmetrical and

antisymmetrical fighter rotations may be defined as follows:

n
N

b=b(h-t) s ei(nre)  Med(n-v) o

(6] | o

Pe

[
]

(9, + 92) 6 =% (7 - 9-2). W =% (¥ + ) (10)

Then, one-half the sum of equations (7) and (8) is
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. . ' ' bb .
mfov - (L\rf +- Zvaf)v + mpXZp¥ + Eanfvo "'-X<va + Zvaf) + _l!-—f Zu;ﬂf -

(va + Zvaf)Vow + mp %‘- - ZZf)¢ + [Z(va + ZfY - b_bi zw:lgj +
+m—+Z +Z +ZY '+bf2Z ¢_
¢aszf cos 7g - mef A (Zef + Xwa - 257, ) f(vozwf -

. . b2 .
Wp sin 70)3& - (Ixzf + mfxf?.f)ﬂ;a + ch(LV + Zvaf) - L‘.lff + —i— Zuf] v+

_ 1
Ij(va + ZfYVf)Vo - ZeWe 8in 75[1]:'& =3 E'_,l + L2 + Zf(FYl + FYE) -

%(le - FZE)] (11)

Alpo, one-half the difference of equatfons (7) and (8) is

-b b b - .b.l
£ g - i N x _£%
5 ufu mf2w+2waw+mf >

"’lw

28 ot + 72, - ¥2)5 -
bz ve+|1 (be z.2)lg . 'z .
—E—wao + |Ix, + me\g + Ze S L¢f+ f(va+szvf)+

b2 s be e bps. .
- wa]% - Poaily cos 7o - meke £ Oy + F(2g « X2y - 262, )6, +

T

+ ZoY - Ly +
bvs f"f) Ve

F(Vou - Ve on 70)% - (Txg, + mrkee)lp + Eﬁf

bl . ’ -
_i'__ zurzlmlrs + [(LV + ZeY, f)v - ZMg sin 7;]*5 = %El - Ly +

Ze(Py, - Py,) - 2 le +FZE:I (12)
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The varisbles occurring in equation (11) are v, ¥, @, B, ©
end V., while those occurring in equation (12) are u, w, 68, @,
65, and W The set of variables occurring in equation (11) may be

designated as the lateral degrees of freedom of the entire system and
those occurring in equation (12) mgy be designeted as the longitudinal
degrees of freedom, That is, the lateral degrees of freedom of the
gystem are the ordinary lateral motions of the bomber and the anti-
symmetricel components of the combined fighter motions as defined in
equations (10). The longitudinal degrees of freedom are the longi-
tudinal bomber motions and the symmetrical components of the fighter
motions as defined in equations (9).

a’

If the remaining two pairs of fighter equations (equations (6.7)
end (6.10), and equations (6.9) and (6.12)) are similarly replaced by
one-half their sums and differences, by making the substitutions given
in equations (9) end (10), the same separation of variables occurs.
Finally, using equations (9} and (10) in the six bomber equations com-
pletes the separation of the twelve equations of the entire system into
glx lateral equations and six longltudinal equatlons, which are inde-
pendent of each other. These equations are presented in appendix A.

The longltudinal and latersl equations may now be treated sepa-
rately. The stabllity of the longitudinal motions may be determined by
the well-known method of expanding the determinant of the longitudinal
equations and evaluating the roots of the resulting characteristic
equation. The . .game may of course be done independently for the lateral
motion. Actual solutions may be obtained by any of the well-known
methods for solving sets of linesr differential equations, such as the
Laplace transform method, some step-by-step method, or by use of an
analog calculator. If the rotational motion of a given fighter is
desired, it is simply necessary to use equationa (9) and (10). For
exemple, @) = @5 + @y, and @y = §, -~ @5. In order to obtailn the indi-
vidual fighter motions, both the lateral and longitudinal equations

must be solved, since these motions contain both the lateral and longi-
tudinal modes of motion.

Thege equations hold for the most general type of coﬁpllng likely
to be encountered. In practical cases meny simplifications will prob-
ably be possible. For example, Z and Zy will generally be much

b .
smaller than %, and 35; respectively, Also, for unswept wings X

. b .
and Xp will be much smaller than % and 7;; respectively. These

facts in conjunction with the approximate magnitudes. of the familiar
steblllity derivatives of the Individual airplanes show that it may be
possible, in practical cases, to lgnore many terms in these equations.
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Note that the set of lateral edquations is eleventh order in the
time-derivative operator and the longltudinel equations are tenth
order. Also, neither characteristic equation has a zero root in the
general case. The solution of these most general eguations of motion
may, therefore, be a formidable task. In order to determine the effect
of varying parameters. on the motlon of the configuration, it would be
necessary to use an analog computer. The fighter rotational motions
migt be restricted in order to reduce the differential order of the
problen.

CONSIDERATION OF STEADY-STATE FIGHTER DEFLECTIONS

In defiving the equations of motion it was assumed that there were
no steady-state angles between the airplanes in the steady-state con-
dition. - Inagmuch as such angles may exist, their effect is now -
congidered. :

In the practical case, 1t seems reasonable to assume that the
yawing moment of the fighters due to their drag will be trimmed out so
that the steady-state fighter yaw angles vanish. Since the X-axis 1s
arbltrarily chosen-along the initial flight path, the initial pitch
angle also vanishes.  The remaining angle which may be consldered is a
possible angle of stesdy-state "droop" of the fighter wings.

In the following analysis, 7o 18 assumed to be zero; then the

steady-state roll angles are determined by the following equations of
trim for side force, vertical force, and fighter roll about the left
and right.coupling joints, respectively:

L'fEin(¢1)o * Sin(?fe)o:l =

L' - W+ L'fi}os(¢l)o + eos(¢2);} - FWp =

—

be :
.= _ —
—[L'e - We cos(¢2)oJ =0

o . - 1
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The first of these equations imposes the obvious condition that
(¢1)0 = -Q¢g)o; that is, (¢a) 0. Let (¢2) = §,, then ¢1) - -4,

and the last two equations are identical. The remaining conditions then
are . '

'L'f = We cos @, _ (13)

L' =W + aig(L - §¢s2¢o) (1%)

These equations show that the confilguration mey be trimmed with the 1i1ft
on each fighter not sufficient to support its own welght, ir which case

L'
the trim angle of droop will be ¢o = cos l.wzi. Equetion (1k4) also

shows that the bomber 1lift will have to be correspondingly increased to
carry the unbalanced welght.

Note that the trim equations are satisfied for negative droop also,
since ¢0 appears only In the cosine function. This fact impllies that
there is & trim condition with the fighter wings poised above the bomber
wing level. However, & simple consideration of the effect of slight
variations of fighter 1ift or roll angle on the fighter rolling moment
about the hinge shows that the upper trim position is statically -
unstable, the ¢o = 0 position is a position of neutrsl equiliblrum,
and the lower trim positlion is statically stable. It might therefore
be desirable to allow the fighter wings to droop somewhat 1f the bomber
wings are capable of sustaining the additional steady-state load. It
should be noted thaet the serodynamlic interference effects have been .
ignored in this discussion. These effects might make positions of nega-
tive droop stable. ; .

The case of gteady-state flghter roll angles, such as have Jjust
been described, may be handled by meking the appropriate change in equa~
tions (2 2), (2 3), (2.5), and (2.6). Equation (1) now implies, when
#2), = = fo, that - - | -

v+ V¥ o+ x¥ - 7 = (vi+ V¥ + Xf¢l - Zfﬁl)cos_¢o +

. b . .
g
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v + \.ro\y + XV - 2§ = (v2 + V¥, + Xf‘]fg - Zfﬁfe)cos Bo -
| (v - Yoy = £ 9 - X;0,)s1n 4
W= Ve - % ¢ - X6 = (wl -V, + b?f al - Xfél)cos- $o -
(vl + Vol + }Lf\-lfl - ng;ﬁl)sin Bo

W~V +2g-x6

)cos @o +

il
=
n
|
<
o)
@
)
1
|
«,
N
1
H;N
o)
no

(v2 + Vol + Xp¥, - Zf¢2)sin %o

These equations glve the modified equations of condition and replace
equations (2.2), (2.3), (2.5), and (2.6} as follows:

vy = =Vo¥; - Xfiirl + ng'él + (v + V¥ + X¥ - Z{B)cos go -

(w - Vo0 - bg- X8)sin g, | (15.1)

Vo = =Vo¥, - Xf\.lfz + ng;}e + (v + V¥ + XY - ZgB)cos @o +

(w' - Vo0 + 123-525 - xé)s-in ¢ (15.2)
wy = V0 53 +Xf6 "’(‘Vo —.—g-gz-Xé)cos¢o+

(v + V¥ + XV - Zsa)sin %o - (15.3)
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w2=v092+%¢2+@é2+(w-v09 +%¢-Xé)cos B -
<v +-Vd¢ + XV - Zﬁ)sin ¢° o (15-45

It is easlily seen that these condltions will not destroy the symmetry
properties of the final equations of motion. Actually, the most logical
way to derive the equations of motion in symmetricel form would be to
use the equations of condition in symmetrical Fform (sum and difference
equations, with symmetrical and antisymmetrical fighter variables),
together with the independent fighter equations in symmetrical form
replacing the usuel independent Ffighter equations given- in equations (5).
This method was not used only because 1t was not desired to confuse
unnecesgsarily the discussion of the application of Lagrange's method by
introducing questions of symmetry.

In symmetrical form, equations (15) become

v, = "1_;7_.2_ = Vo¥s = Xe¥a + 2o + (v + V¥ + XV - Z;ﬁ)cos fo + bf sin g,  (16.1)

e =2 = V¥, - XV, + 2, - (v - V6 - Xb)sin ¢ - (16.2)
b . . .

vg Bl 2o v - L P 4 Xeb, + (w- V0 - XB)cos ¢ (16.3)

W - Vo

B s . . :
Vo =152 =v0, - L8, +Xb, - v cos §, + (v+vw+xﬂr z¢)sin fo  (16.1)

It can be seen that v, and w,, which will enter into the lateral
equations of motion,ipontain only lateral variables, whereas wy; and
Vg, which enter only into the longitudinal equations, contain only
longitudinal variables. Therefore, the symmetry propertles of the final
equations are preserved even when steady-state roll angles are assumed.
Physically it is clear that any steady-state angles which preserve the
symmetry of the steady-state conflguration will give rise to separable
lateral and longltudinal equatlons.



2l N NACA RM L51G12

SIMPLIFIED EQUATIONS FOR MORE RESTRICTED COUPLING

v

Some of the possible simplifications of the genéral equations of
motion glven in appendix A have already been mentioned. For example,
if any of the coupling-joint position components (X, %, X, and Zg)

should vanigh, meny terms in the general equations would not appear. A
more Pundamental simplification 1s that in which the rotation at the
coupling joints is restricted to less than three degrees of freedom.

In such cases additional equations of condition may be imposed; two of
the variables are thereby eliminated for each restriction in a com-
porient of the rotational motion. Thus, the number of equations and the
differential order of the equations of motlion which must finally be
solved are reduced.

« If the flghtera are restricted, by the design of the coupling, ' to
rotate about only one or two axes instead of being completely free to
rotate, then the 'equations of comnditlion will generally involve the
directlion cosines of the hinge axes with respect to the steady-state
axes. The method of treating these cases may best be illustrated by
carrylng out the case for rotation about one axls only, corresponding
to an ordinary hinge coupling.

. The usual practical type of coupling is a hinge type of comnection,
the axis of which is parallel to the symmetry plane of the bomber. If
the hinge axls is parallel to the XZ-plane, the fighters and bomber are
rigidly connected in pltch, and two additional equatlons of condition
may immedistely be written as

&, =86 : ~ (17.1)

6, =0 . (17.2)

Now if the X-axes 1n the ilndividual alrplenes may be chosen such that
the hinge axis is in the direction common to the steady-state X-axes,
then the addltional two equations of restriction are simply

v, =V | (17.3)

\FE = (17-J‘|')
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In general, such & choice of the steady-state X-axes would only be
rermissible 1f body axes were used instead of stablility axes. " In this
case the original equations of motion represented by E; in equation (3)
would have to be written in terms of body exes. However, if stability
axes are to be used In setting up the uncoupled equations of motion, as
has been done in equationes (5}, then the direction of the steady-state
X-axegs must be along the steady~state velocity. If the hinge exis is
assumed to be fixed in the bomber or in the fighter wings, some steady-
state angle will generally exist between the hinge axis and the velocity
direction. This angle will be called Mo and is assumed positive when

the hinge is pltched above the velocity in the steady state. Let the
disturbance deflectlion of the fighter about the hinge axis be called o
and be taken positive in the same direction as positive roll. Since the
disturbance angles are small they maey be treated as vectors, and the
components of ¢y along the steady-state X- and Z-axes are (o - § and
Wf - ¥, respectively. Therefore, .

¢ - ¢
¥ - ¥

gy cos 1, s - ¢ = 05 cos 14

-

L sin ¢2 - ¥ = -0, sin q

Eliminating oy and 95 from these  equations ylelds

.(¢l = ¢)Sin g
(¢2 = ¢)siq Mo

(v - wi)cos Mo

(¥ - ¥2)eom n,

Thusﬁ the equations of condition corresponding to equations (17.3) and
(17.4) are-

Y= ¥+ (f - g))tan n (17.3%)

¥, v (¢ - ¢2)t$.n iR (17.41)

In this case the hinge has been assumed to lie parallel to the
XZ-plane. By using equations (17) the four variables 6r and V¥, may

be eliminated. In the most general cagse of hinge coupling, the hinge
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]

axis willlnot'necessarily-be perpendicular to the Y-axis, but will make .
certain steady-state angles with all the axes. Let these angles be Ty

fos and N3 with respect to the X-, Y-, and Z-axis, respectively. Then
by proceedling exactly as before, equatlons (17) become

cos 1,

61 =0+ (4 - F)o N (18.1)

e =06+ (fp - ¢)§:—:§ - | (18.2)

, v o=V (- ¢)§§§-%f (18.3)
Yy =¥+ (B, - )%'::% | (18. 1)

These are the general equations of condition which must be used along
with equations (2) in applying Lagrange's method for hinge coupling when
the hinge is skewed wilth respect to the symmetry plane.

In order to lllustrate the modifications Introduced by the addi-
tional conditions, the simplest condltions, represented by equa-
tions (17.1) to (17.4), will be considered. By proceeding as before,
the additional equations corresponding to equations (4) are

x.T(ae - -aél) =0 (19.1)
rg (86 - 88p) =0 (19.2)
Ag(B¥ - 8¥) =0 (19.3)
Mo(8¥ - 8Y¥,) = 0 (19.%)
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" These conditions introduce the following additional terms into
equations (5): (xg + Mjo) in equation (5.2), (3.7 + ’“8) in equa-
tion (5.6), -Ay 1in equation (5.8), -M7 1in equation (5.12), -rg
in equation (5.1%), and -Ag 1in equation (5.18). Six of the equations
of motion given in equation (6) will not be changed and will therefore
still be valid in this case. These are equations (6.1), (6.2), (6.3),
(6.5), (6.8), and (6.11) which are the translational equations and roll
equations. = The substitutions given by equations (17) make it possible
to eliminate four more varlables, so that only eight variebles remain.
Therefore, when equations (17) are used in the six equations which
remain unchanged, only two additional independent equations are needed.
In fact, only two more linearly independent combinations of equations (5)
vhich eliminate the A  are possible. In order to eliminate the addi-
tionel A introduced the simplest combinations of equatlons would
gseem to be

(5.2) + (5.8) + (5.14) + f[s 10) - (5. 16] (20.1)

(5.6) + (_5.12) + (5.18) ' (20.2)

The equations of motion may now be symmetrized exactly as before.
The nondimensional varisbles u', f, and a are used in place of u,
v, and W, respectively. Then, for the case of. hinge coupling with the
hinge axls along the steady-state X-axls, ifi it 1s also assumed that
X=2Z=Xp =2y =0 1in order to obtain the simplest possible case, the
equations of lateral motion are

(m + 2mg)V P - (Yo + 2p)B + (m + 2m)VF - ¥ (W + BigYsin 7, -

PW cos 7o ~ HPgWe cos 7o = Py + Fy, + Fy, (21.1)

_(NB_ + zvﬁf)ﬁ + Ez-" Zizf + %(b_" bf)%];[; - ]}Idr e P

o+ bf)zxu,f] - IXZ.QE b—(%-;;gf—)_xa

£ Né ¢ - aIXZfBa "

be(b + B Cls b + be | . ~
l:f_( O-f Xaf - 2N¢;|¢a— N + Ny £+ N + T(Fxl "' XE) (21.2)

b
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~LgB - Ixz*lr + ['iul Zl-l'f-LiZlir + (IX + mf_bzf);z <¢ )¢ +

Sh L LUELE (AL AR (2.3

b+ b bb b .
-LBB-IXZ +|Z—f£——f)-zu Iw]wumf L -fzaf¢+

2\ee 2 . -
b b b
I + f - b _.f_ = .]; - __i:. - .
(Xf o T)¢a' <L¢f T, Z“f)¢a EEI tr2 2"z " T,
' (21. k)
and the equations of longitudinal motion are
(IY + 2ny)6 - (Me + 2Méf)9 - (Mu| + 2Mu,f)u= - (M& + %f)& -
M+ oM Q+EM-¢ s 2y Fo=MaMy 4N (21.5)
( o af) Vo @ Vo %® 1 2 |

o(W + Zg)cos 7, + (m + 2mp)Voat - (xu. + exu.f)u' - (xa + zcaf)a +
:;—:‘xafg'és = Fx + Py, + Py, (21.6)
_l:z'-e + 225+ (m+ em_f)vg'e +_a(w + Big)sin 76 = (Zgr + 2Zgr Ju' +
(m + 2mg)Ve - (T + CALE mebf, + :;—Z ZaPe = Py + Fz + Fp,
(21. 7)

b e be . bp be _ . . bg
?(mfvo + Zef)e - 8 F Ve sin vy + -E—Zu,fu' - mp 3 Voo + & Zafor. +

(Ixf mgbse ¢ (¢ )¢ = %E'_.l - L, - 92i<FZl + eril

: (21.8)
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It might be noted that the equaticns of motion in this case could
.-have been. obtalned directly from the general case glven in equations (6)
by simply adding the three pitch equaetions and the three yaw equations
and using ¥ =14 =¥, and € =6 = 6, to obtain equations (20.1)

and (20.2). The reason for this is that the constraints in this case
are the same as in the general case except that two additional con-
straints are edded. The method of introducing the additional A was

used in order to show how the more general constraints (such as given
in equations (18)) might be handled. Also, if the general equations
are not known, it is always more convenient to introduce all the con-
straints as done here, rather than first deriving the genersl equations.

The system described by equations (21) 1s probably the simplest
‘wing-tip-coupled system. The lateral equations can be seen to have a
seventh-order characterisitlc equation, but, since there are two zero
roots, the problem is essentlally fifth order. The longitudinal motion
hes a sixth-order characteristic equation with one zero root and is
. therefore also essentially of f£ifth order.

Clearly, there are many possible cases which are less general than
that described by the general equations in appendix A but more general
than that described by equations (21). It is hoped that the discussion
of the modifications introduced by additional constraints has made clear
the methods for obtaining the equations of motion for these intermediate
cases.

NONDIMENSICNALIZATION OF EQUATIONS OF MOTTON

The equations of motlon mey be nondlmensionallized in several ways.
The use of a method which brings in the conventionel stability deriva-
tives of the separate alrplanes would be desirsble, however. One such
method will be illustrated by applying 1t to equations (21).

In order to nondimenslonalize the lateral‘equations, equation (21.1)
is divided by qS, equations (21.2) and (21.3) are divided by ¢Sb, and
equation (21.%4) is divided by qSsgby. Then, the following substitutions

- Sgbp Spbed S be
~are made: Al =55 A2 = Sb3 3 A3 =35 Al[. == end, for the
nondimensional time-derivative operator, D ==%1-£% The resulting
_ o

egquations are
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(a*b* 'I’Alubf)Dbﬁ - (?’Yﬁ + 2"*303!‘3:?)B * (2%-”’ 1+*"*:LF“bf)Db"’ -

-q;(cw + 2A3cwf)tan Yo = Cy® -- 2A3cwf¢a = Cy + A3(C_Yl +-CY2) .

(22.1)

- . - 2. 2 A 2y .
(an + alcnﬁf)s + E*sz S+ gy, Ky 2+ Ay(1 + Ah)%;b;JDb ¥
Lc '+AA1+—C“ :iA“(l+-A)EC ~Dﬂr+2|JKXZD2¢+
2 By TLEp, T 273 k) Xare|TRY T THXZD
La (1- + 1) - -1-6 %¢ + bA Kyp Dy, +
2 3 Fap ~ 2 O RETRS O
[:%-A3(.1 + Ah’)cxu.f - AlAthP;]Dbsé‘a =C, + Al(Cnl + Cna) +

Lag(1+ Ah)(cxl - Cxa) | | (22.2)

(Bukx® + Aypy, 0% - %_(Cz_p +.A3Czuf)Db¢ + AyAyy, Dy, -

1 _ 1 :
3 glczafnbgsa_ =Cy - 2 A3(CZ1 - cZE) | (22.3)
- 2 Ly - % ¥+ L ] -
Crg P 28), By Kxz Dp2¥ + E(l * Au)czu.f 5 Ahcz_r;]Db“‘ + 5 by Do
1 - ' L\p. 3 1 -
I CZcx.pog N Al‘eubf (EKX:EE - %)Db%a - Al‘“(—é Czpf R CZaf)Db¢a

51y * %p) 7 502 - %) ‘ | (2.
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. In order to nondimensionalize the longitudinal equations , equa-
tion (21.5) is divided by gSc, equatlons (21.6) end (21.7) are divided
by qS, and equation (21.8) is divided by aS¢cp. Then, the following

' Sec Spce3 s c
i 4 = _—f f - f f ’ - —f - _f
substitutions are made: B = So Bs v B3 57 B_l[- <
be . be.
135 =5 B6 = G and, for the nondimensional time-derivative operator,
_c d ; +1 0m;
]?c = ¥, at The resulting equations are

2 2\p 2 . (1 -
(&GKY + o Ky )Dc o (2 Cy * Blthmqf)Dce _
(cmu,_ + zslcmu,f)u' - (%.Cm& + BlBh_Cm&-f)Dca -

(cma + 2B)Cq_ )a + % B BB.Cp D B, +

BiBsC, Doy = Cp + B fCy + C | | (22.5)
5mufcs m (ml mz)

(cW + '233cwf)_e + e(uc + _aBlucf)Dcu' - (cxu' + m3cg'f)u' -

(CXa + 2530Xa.f)°‘ + B3B5CXach¢s = CX_ + B3(CX1 + sz) (22.6)

-(% Oz * Bilzg_ + Bic + kB f)DCB + 6(Cy + 2ByCy,Ytan 7, -

.(CZ;g + ZB3CZugf)u' + (zuc + lLBlucf)Dca. - (CZa + EB3CZa_f)a _

'

2By Boptc Doy + B3B5CZach¢s = Cy + 33(021 + CZ2) . (22.7)

L
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L - L L r_
35(qu n czqf):nce 5 OBely, ton 7o + 3 Belp,, B' - Bope Do +
Lg a + Bs2u, (Ky 2+ L\D 26 - BBgflc, 4+
2 6CZcx,f > cr Xf 2)~c Fs 9] 6 P Ipf

% cZaf)Dc¢s =z B6(Cil - Cy,) - %136(ch + cZQ) (22.8)

CONSIDERATION QOF AERODYNAMIC INTERFERENCE EFFECTS

Because of the serodynamic interference between adjacent wings, 1t
is clear that the pressure dilstributions arising from glven motions will
be modified. Probably the mogt important interference effects are the
changes in the 1ift distribution resultling from an angle of attack or
rolling veleocity. From references 1 and 2 it can be seen that, in addi-
tlon to modifications of the ordinary stability derivatives, certain
unusual stabllity derivatives are Introduced. These derivatives arise
because the 1ift distribution resulting from the motion of a given wing
does not vanish at the wing tip, but-"spills" over ontc the adjacent
wing. This phenomernon gives rise to two lmportant dynamic effects.
First, there are forces on a given airplane arlsing from motions of the
ad jacent one, and, second, there are coupling forces between the lateral
and longitudinal modes of the fighters. The second effect arises from
the asymmetry of the 1ift on the fightere. For example, a change in
angle of attack on the fighter wing causes a larger change in the 1lift
on the inboard wing than on the outboasrd wing, because of the inter-
ference effect of. the adjacent bomber wing, Therefore a rolling moment
is produced.

The purpose of this section is not to evaluate these interference
effects, but simply to show how they mey be brought into the equations
of motion when they have been determined by some theoretical or experi-
mental method. In general, it can be seen that the three types of
interference which have been mentiocned in the discussion of angle-of-
attack and rolling-velocity effects (namely, modifications of the ordi-
naxy staebility derivetives, cross derivatives between the bomber and
fighters, and cross derivatives between the fighter lateral and longi-
tudinal modes) are, dynamically, the only types which can occur even in -
the most general disturbance motions. Therefore, the rolling-velocity
and angle-cf-attack interference effects will be considered 1in detail,
and, 1f any other interference effects should turn out to be important,
they may be treated in a similar manner,
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For this discussion the modifications of the values of “the ordi-
nary stability derivatives are unimportant, since they may be taken
care of by simply replacing the ordinsry déerivatives by thelr modified
values. The types of unusual stability derivatives will be distin-
guished by use of parentheses. For example, the bomber rolling moment
due to unit change of fighter angle of attack will be written’ (L)

" the fighter rolling moment due to unit bomber angle of attack will be
written (Lf)a, and the fighter rolling moment due to unit angle of

ettack of the same fighter will be written (Iu) .

The unusual ptabilify derivatives arising from fighter angle of
attack are .(Lu)f, (Z)af! and . (L)af°’ Because of the symmetry, the
following definitions may be made: ‘

“(La), = (Ta)y = (B, : (23)
(2o, = (B)a, = (Bg, (24)
(L) = -(L)q, = (L)a.f - (25)

Similarly, for the stability derivatives assoclated wlith a bomber
angle of attack, the following definitions mey be used:

)

(=), - (), (Zf)a_ | (26)

-(T), = (L2)_ =(Le), | (27)

For fighter rolling-velocity derivatives

o), = ), (28)

-(Zfz)l -
@y = @)y, =@y (29)
(L)ésl = (L)g'éz = (L)Szf. o (30)
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Finally, for bomber rolling-velocity derivatives,

(Zl);g

~(22)y = (22), (31)

(LE)53 = (Lf)é | (32)

The forces associated wlth these derivatives may now be treated
exactly as the ordinary aerodynamic forces were. These are simply .
additional applied forces and may be considered in eguation (3), in the
proper equations of equations (5), or in the final combined equations
of motlion. The terms mentioned in equations (23) to (32) enter into
equations (5.3), (5.5), (5.9), (5.11), (5.15), and (5.17). Now suppose
" that 1t 1s desired to find the additional terms in the final equations
of motion arising from these unconventional stability derivatives. For
simplicity, essume the system is of the type 'described by equations (21).
In this case the only final equations which are-affected are equa-
tions (21.3), (21.%), (21.7), and (21.8).

In equetion (21.3), the aerodynamic interaction forces which must
be considered may be added to the right-hand side of the equation as
additional applied forces. These additicnal terms are obtained with
the use of equations (25), (26), (28), (30); and (31) and are as
follows: . -

(Dgg(@ = @) + (L)é,f(éﬁl + @2) - %Ezf)aa = (Z5) -3

-

) (B + Bo) + (20)gf + (@)

These terms have been writtén out in detaill to make clear the method of
obtaining the additional terms. By the use of the equatlons of condi-
tion for this case, @y and @, may be eliminated as follows:

1 ! _1( b{z bf')_a bé; by ¥y
= e = = —|W - 2 - == =% . 2 - =
2. L _EVO Evo 2; 2 ¢l 2 EVO Vo 2
Lo, -Y2 g, b g, be b2
272 X, " 27 kv, NV, 2
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and
1 . . .bf .
3(m ¥ %) =« - 5o P (33)
' ’ . b . .
FCREORES- ~ A (3)

The additionsl terms to be added to the left-hand side of equation (21.3)
are obtained by changing the signs of the previously derived additionsal
applied forces and using equation (34):

é%(i)af(bﬁ + bf&a) = Z(L)éfda = b<Z¢)£¢§ + b(zf)éé

A similar process ylelds the ‘correction terms for the other three
modified equations. When the proper collection of terms is made, the
additional terms from the rolling-wvelocity and angle-of—attack aero-
dynamlc interference forces on the system described by equations’ (21)
are .

. | ' - . ) ‘. ‘ . . ’ |
E,l;(lx)af + (Zf);lw + Ef_im“f - b(Z¢)f - 2(L)¢f:’¢¢ (21.31)

ety dae) - G- o, - e
--éEZ)“__f + (Zf).c;lé + E—i(z)af' + 2( ¢ . + 2(Z)¢:|¢S (,2‘1_.7')
[+ G, B Je- ¥Rie s Gl @

In practice, 1f the aerodynamic interference forces had been known,
they would have been included in equation (3) as aerodynamic forces in
the E; associated with each 'degree of freedom, Therefore, they would
have appeared. in the final equations in the proper form, Thils more
loglcal procedure was not followed for itwo reasons; . First no attempt
has been nade to determine all the interference forces which might be

important, since this paper is primarlly concerned with theé dynamic
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rather then the aerodynamic effects of wing=tip coupling. Second, the
conslderation of aerodynamic Interference in the midst of the expla-
nation of ‘the dynamic effects would tend to confuse thies explanation.

The additional terms in equations (21.3'), (21L.k4'), (21.7'), and
(21.8') show that the aerodynamlc interference terms do not destroy the
symuetry of the final equations of the total system, since 1t will be
noticed that the additions to the lateral eguations (21.3) and (21.4)
contaln only lateral degrees of freedom and the additions to the longi-
tudinal equations (21.7) and (21.8) contain only longitudinal variables.
The physlical reason for this is as follows: Although the aerodynamic
interference causes ungymmetrical pressure dlstributions on the fighters,
yet wlth respect to the plane of symmetry of the total system (that is,
the bomber plane of symmetiry) these pressure distributions are symmet-
rical for symmetricel motions and antisymmetrical for antisymmetrical
motions. e : . = ST .

CONCLUDING REMARKS

A method has been presented for deriving the equations of motion
for the small disturbance motions of a symmetrical configuration of wing-
tip~-coupled airplanes. lLagrange's method of-undetermined multipliers
was used to take account of the dynamic effects of the constraints at
the wing tips on the equations of motion for small disturbances of the
uncongtralned system of-alrplanes.

By thls method, the equations of motlion of a wing-tip-coupled
system with three degrees of rotational freedom gt each coupling joint
were derived with the asgsumption of no steady-state trim angles between
the fighters and the bomber and with the effects of aerocdynamic inter-
ference between the alrplanes being neglected. It was shown that the
twelve equatlons in twelve unknowns, which are necessary to describe
this generel system, may be separated into mitually Independent lateral
and longitudinal modes conslsting of six equatlons each, The lateral
equations are eleventh order in the time-derivative operator and the
longltudinal equatlione are tenth order. The equations show the impor-
tance of the position of the coupling Jjoint 1n determining the stablility
derivatives of the combined system. The simple modifications caused by
steady-state fighter deflections were also polnted out.

The effects of restricting the rotational motion at the coupling
Joints were then consldered, and it was shown how the equations of motion
could be derlved for these cages with fewer degrees of freedom. The )
importence of the effects of the orlentation of the rotation axes on the
equations of condition in these more restricted cases was pointed out.
The equations of motion were then derived for the simplest case of hinge
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coupling with the hinge axis parallel to the steady-state X-axils and
the position of the hinges lying on the common steady-state Y-axis of
the airplanes. For this simplest case, the solution of either the
_lateral or longltudinal equetions wag shown to be & sixth-order.problem,
A convenlent method for nondimensicnalizing the equations of motion wes
illustrated by applying 1t to these equations.

Finelly, it was shown that the aerodynamic interference forces
could be treated in the same manner as the ordinary serocdynsamic forces
and would introduce no fundementel difficulties.

~ Since the type of coupling with complete rotational freedom would
be most deslrable from the point of view of decreaslng the strains on
the %ing structures, 1t would seem advisable to investigate the sta-
bility of this case by use of analog computers. In order to obtain
accurate results the serodynamic interference forces would first have
to be evaluated by some theoretlical or experimental means. Since the
equations of motion are known, the computing machines could then be
used to evaluate the effects of varying significant parameters, such
ag the positions of the coupling Joints, on the stablility of the
system,

_Langley.Aeronaﬁtical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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APPENDIX A

GENERAT: EQUATIONS OF MOTION OF A SYMMETRICAL WING-TIP-COUPLED

CONFIGURATION OF AIRPLANES WITH COMPLETE ROTATIONAL

FREEDOM AT THE CCUPLING JOINTS

The lateral equations of motion are obtained as follows by making
the conventional transformation to nondimensional translational velocl-

ties; that is, u' =+, P =1, and o =X, wvhere « and B are,
VO VO . Vo :

to first order, the disturbance angle of sttack and angle of sid.éslip,
respectlvely: ‘

(m + 2mf)voé - (YB + aYﬂf)B + 2mfx;b’ +'(mvo'+ 2:qu0 - % Yﬁf);lf -_
(w sin 7 +'2Iﬁf)1|r - 2npzf + % Iﬁfg'é - (W cos 7o)8 + 2uZhy, -
. .. 124 .
;—ZO-I; Yﬁfﬂfa - E(Wf cos 7_'o)¢a. - omXe¥, + 70_f YBf\P‘a +
2(fp, - Ve 510 70)¥ = Fy + Py, + Fy, (A1)
..mxvofs+‘(X:fﬂ-N5)ﬁ+(Iz+mf%%).{r-(1vv+mxv + 2= Xu') +
(XW sin')f)\}r- IXZ¢+<£'XGT‘ -)§B+<XW cos')')¢+'b'bfxaf¢
(o] EVO ¢ Q@ a
e TR0, - By, G - mpnd, ¢ B (B, - Kok )P ¢
(A2)

(be cos ¥4 - hx%)ea_ =N - XFy + %(Fxl - FXE)

R
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. mZV - (Lg + Z¥g)B - IXZ;J; + (mzvo =L+ 1’2%- zu,f)\} - (W sin 7 )¥ +
(IX““f?) (¢ a‘v‘za) - (W 8 75)B + mp L F -
bbf LX) b N B
L 7 o + oS Bar Yo - ¥ + [, - Zer,) +

vz le. + b -We sin y \o. =L + ZF, + 2(F, - F A
ef]a (Zq.f £ 810 7)6q v+ 3(%2, zl).(3)

?ufzf{roé - (%, + 2% )s - DB + [Vi.(bjbri Zat, . Tp, - xzfxﬁf) -
mfzfv:]\y ; (zfarB + LB W+ me(3E - zzf) (z:zjr_.:cﬁ o+
___za_f)¢+( 7 a,::af-ﬁ_\»Ixf)ngﬁL [(zferﬁff..
ety + Eﬁf zuf) ¥ rﬁ];ﬁa - (ifwf cos 7o)s - (IXZ . |
| e Ze) ¥ + [ (XfLB + Xglelg  + T Zys )‘- :‘ﬂfa
(Tg, + Zety, - By o1 7o) - me £ x4, + E_g;(xfzaf -
seny.) + 2 zéf]aa oy e st r o=

;2_ EL]_ +L2) + Zf(FYl +_'FY2) - %Q(le - F.Zg):] | < (Ab) -
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[

~meX T B+ (X%, - T, )P * T - _xxf)G + I}%(}ocfysf - Mg -
bbe )_ Vo lb + (Xetp - N \¥ o+ mX 7P + LN, - 7.y .
. . 2
B i [ s m)
. - . 2 (X ) *
Néj{lséa + (Xfo cos 7o)¢a + (IZf.."' mfx:lf‘.2 + op Ef_—')‘l’a * lzv—]O-(XfNBf =
: . .
xfEYBf - :Ei— Xu'f\) - N‘}Jwa * (NSf - XfYBf * Xfo sin 70)1”& =
. mZe e 8y + = (zfxu, - xfxaf)e + —-(wf cos 74 - f)e
3 ENl * NE) * —<Fx - XE) Xf(FY * Fyz)jl (45)
-ncze B + gho(Bfur, - Xefur - Mur Y + B M, - meke)$ +
_'-D_' | -z %+ 20(Ll M. - B+ 2Lty 4 Xz, -
ol % ]_{fz‘_‘f fx“f)¢ T2 (Vo M“f mfxf) & 2Vo( ap g
%o o - mefe o Vo + B (Bear, - efury = Yar Jha + (Tx, +
X .
m:?’_‘f2 + mpZeR - v—i .M&f)ea + E,—%(szfxaf_.“f XeZelyt, - xfzzaf -
2%y - Xl + Zyr ) - XeZ§_ - My - M f]éa + (Bfa, - X, -

. . . . _ 1
Maf - Zfo cos 70 + Xfo Sm 70)98. = EEM]- - Me) - Zf<FXl - Fx2> +

Xe(Fy, - E_Za)] | (46)
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- The longitudinal equations for this general case are

(m + 2ug)Voh! = (Xyr + e ot - (xa * Dy Yo+ 276 + v-ﬁg(pcaf -

SR

__ . v -
W cos 7o + X, Y0 + == X B, + mpbaly - & X0 ¥, -
-~ % Voo %% S S

e 2 ) - . ‘ . ‘ _
mfzfgs + ‘-r-;(zfxu,f - xfxaf)es + 2(Wf cos 7, - xaf)as =

Fy + Fy + F ' A
X7 TX X5 (7_)

(Bur + g Jut  (mr Pu)Vd - (B + B o - 2meX6 + v%(xzdf -

by, g4 _bz ;
Vo Zd'f¢s Vo Zu'fwa‘

B
—
D

2]

|

2mgV, - Zgle + (W sin 745 + ezaf)e - mfbfg.ﬁ.s. +

2mi‘xf.e.s + ZE%(Zqu‘f' = szcr.f) - Zé;[és +

+

—FZ+FZ1+FZ2 | . | (A8)

~mEVGa! + (ZKyr - Kgr - Myrjul + (mXVg - Mg)a + (2K - XZg - Mg)a +

'be. - (Mé + XZ5 + mXV’o)é + (XW sin 7y, - ZW cos’ 70)8 =

M + XFy - ZFg

(49)
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ba bg . Db be o [bp
?fzulfu’ -.mf?fvoa. + = B & + me £ X6 + I:Ef-(zzu.f - xzaf) +
b |+ b
mf—éiv;le- gza_f9+<lx +mfo + me h)¢s EJ‘.;(Z:LB-‘?-'-
2y b2 . -
2 Yp, + zaf + 14 |Bs - (Zile com 7o), - (g, + meXete)fy +
A( b2y, + P ) L |V + (Lg, + ZgY,
To\keTey * Pekelpy ¢ Burg) - By IV, + (P * BTy, -
ZgWe sin 7o)¢s - meXp Pzib's + [ (xfzaf - ZpZ, ) s zei]e +
. _
5 (Zay = Vg 8in 7505 = %ELI - Lp) + Ze(Fy, - Fy,) -
be ,
?(le + an):l (A10)
. bp ., b
mf?fvou' -?fxu.fu! 2 xafa+mf z6 +-i-( ap = Py )e +
xcr.fe" (%xz. +mfxfzf¢ + l: (BLX + XgZelg "ZfNBf)
. b2
Né’;l% + (X cos ¥ )¢ + (Z + mffo + Mg I )\F + ,:—-(xfwﬁf
21_ be . .
xf Bf - T Xulf - N\!ff 'llfs + (Nﬁf - XfYBf + Xfo gin 70)111‘5 -

= b ¢ Db
£ £ - £
me L Zefy + 2,‘Io(zfxu.f xixaf)es + Q—(Wf_ cos 74 - xaf)es -

%@1 - Np) + %—(F x, * an) XY(FY]_ - FYE)] (A11)
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-meZeV gt * (2eXar, - ngu:f - ﬁu:f)u* + (meXeV, - Mafj& * (ngaf -
e (e e - -
Kellys, * Kokl = Blos + W) - mgkely M&J;lé. - (R, -
it <+ Yl e, - e + Bt - B, + e -
e FVe+ (e, - xfzu:f‘- Muzf)wf;# (e + me2e® + meke? -
= Muf)e EvS - e, - Xz + _(xfzfxa + R, - X -
2,0, + zfuu, - xfuuf)]e + (B, = Xelo, - Bty con7, +

xfwf sin 7, - My )% = %IEMl + M) - 2e("xy * Txp) * Xe(Fz, * anil

(A12)
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Figure 1,— Stability axes. The motion of each individual airplane is

given in terms of stability axes in that alrplane.
p031t1ve direction.
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